Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by Tomoko Hasegawa
Total Records ( 5 ) for Tomoko Hasegawa
  Martin von Lampe , Dirk Willenbockel , Helal Ahammad , Elodie Blanc , Yongxia Cai , Katherine Calvin , Shinichiro Fujimori , Tomoko Hasegawa , Petr Havlik , Edwina Heyhoe , Page Kyle , Hermann Lotze-Campen , Daniel Mason d`Croz , Gerald C. Nelson , Ronald D. Sands , Christoph Schmitz , Andrzej Tabeau , Hugo Valin , Dominique van der Mensbrugghe and Hans van Meijl
  Recent studies assessing plausible futures for agricultural markets and global food security have had contradictory outcomes. To advance our understanding of the sources of the differences, 10 global economic models that produce long-term scenarios were asked to compare a reference scenario with alternate socioeconomic, climate change, and bioenergy scenarios using a common set of key drivers. Several key conclusions emerge from this exercise: First, for a comparison of scenario results to be meaningful, a careful analysis of the interpretation of the relevant model variables is essential. For instance, the use of “real world commodity prices” differs widely across models, and comparing the prices without accounting for their different meanings can lead to misleading results. Second, results suggest that, once some key assumptions are harmonized, the variability in general trends across models declines but remains important. For example, given the common assumptions of the reference scenario, models show average annual rates of changes of real global producer prices for agricultural products on average ranging between –0.4% and +0.7% between the 2005 base year and 2050. This compares to an average decline of real agricultural prices of 4% p.a. between the 1960s and the 2000s. Several other common trends are shown, for example, relating to key global growth areas for agricultural production and consumption. Third, differences in basic model parameters such as income and price elasticities, sometimes hidden in the way market behavior is modeled, result in significant differences in the details. Fourth, the analysis shows that agro-economic modelers aiming to inform the agricultural and development policy debate require better data and analysis on both economic behavior and biophysical drivers. More interdisciplinary modeling efforts are required to cross-fertilize analyses at different scales.
  Hugo Valin , Ronald D. Sands , Dominique van der Mensbrugghe , Gerald C. Nelson , Helal Ahammad , Elodie Blanc , Benjamin Bodirsky , Shinichiro Fujimori , Tomoko Hasegawa , Petr Havlik , Edwina Heyhoe , Page Kyle , Daniel Mason-D`Croz , Sergey Paltsev , Susanne Rolinski , Andrzej Tabeau , Hans van Meijl , Martin von Lampe and Dirk Willenbockel
  Understanding the capacity of agricultural systems to feed the world population under climate change requires projecting future food demand. This article reviews demand modeling approaches from 10 global economic models participating in the Agricultural Model Intercomparison and Improvement Project (AgMIP). We compare food demand projections in 2050 for various regions and agricultural products under harmonized scenarios of socioeconomic development, climate change, and bioenergy expansion. In the reference scenario (SSP2), food demand increases by 59–98% between 2005 and 2050, slightly higher than the most recent FAO projection of 54% from 2005/2007. The range of results is large, in particular for animal calories (between 61% and 144%), caused by differences in demand systems specifications, and in income and price elasticities. The results are more sensitive to socioeconomic assumptions than to climate change or bioenergy scenarios. When considering a world with higher population and lower economic growth (SSP3), consumption per capita drops on average by 9% for crops and 18% for livestock. The maximum effect of climate change on calorie availability is –6% at the global level, and the effect of biofuel production on calorie availability is even smaller.
  Christoph Schmitz , Hans van Meijl , Page Kyle , Gerald C. Nelson , Shinichiro Fujimori , Angelo Gurgel , Petr Havlik , Edwina Heyhoe , Daniel Mason d`Croz , Alexander Popp , Ron Sands , Andrzej Tabeau , Dominique van der Mensbrugghe , Martin von Lampe , Marshall Wise , Elodie Blanc , Tomoko Hasegawa , Aikaterini Kavallari and Hugo Valin
  Changes in agricultural land use have important implications for environmental services. Previous studies of agricultural land-use futures have been published indicating large uncertainty due to different model assumptions and methodologies. In this article we present a first comprehensive comparison of global agro-economic models that have harmonized drivers of population, GDP, and biophysical yields. The comparison allows us to ask two research questions: (1) How much cropland will be used under different socioeconomic and climate change scenarios? (2) How can differences in model results be explained? The comparison includes four partial and six general equilibrium models that differ in how they model land supply and amount of potentially available land. We analyze results of two different socioeconomic scenarios and three climate scenarios (one with constant climate). Most models (7 out of 10) project an increase of cropland of 10–25% by 2050 compared to 2005 (under constant climate), but one model projects a decrease. Pasture land expands in some models, which increase the treat on natural vegetation further. Across all models most of the cropland expansion takes place in South America and sub-Saharan Africa. In general, the strongest differences in model results are related to differences in the costs of land expansion, the endogenous productivity responses, and the assumptions about potential cropland.
  Gerald C. Nelson , Dominique van der Mensbrugghe , Helal Ahammad , Elodie Blanc , Katherine Calvin , Tomoko Hasegawa , Petr Havlik , Edwina Heyhoe , Page Kyle , Hermann Lotze-Campen , Martin von Lampe , Daniel Mason d`Croz , Hans van Meijl , Christoph Muller , John Reilly , Richard Robertson , Ronald D. Sands , Christoph Schmitz , Andrzej Tabeau , Kiyoshi Takahashi , Hugo Valin and Dirk Willenbockel
  Agriculture is unique among economic sectors in the nature of impacts from climate change. The production activity that transforms inputs into agricultural outputs involves direct use of weather inputs (temperature, solar radiation available to the plant, and precipitation). Previous studies of the impacts of climate change on agriculture have reported substantial differences in outcomes such as prices, production, and trade arising from differences in model inputs and model specification. This article presents climate change results and underlying determinants from a model comparison exercise with 10 of the leading global economic models that include significant representation of agriculture. By harmonizing key drivers that include climate change effects, differences in model outcomes were reduced. The particular choice of climate change drivers for this comparison activity results in large and negative productivity effects. All models respond with higher prices. Producer behavior differs by model with some emphasizing area response and others yield response. Demand response is least important. The differences reflect both differences in model specification and perspectives on the future. The results from this study highlight the need to more fully compare the deep model parameters, to generate a call for a combination of econometric and validation studies to narrow the degree of uncertainty and variability in these parameters and to move to Monte Carlo type simulations to better map the contours of economic uncertainty.
  Hermann Lotze-Campen , Martin von Lampe , Page Kyle , Shinichiro Fujimori , Petr Havlik , Hans van Meijl , Tomoko Hasegawa , Alexander Popp , Christoph Schmitz , Andrzej Tabeau , Hugo Valin , Dirk Willenbockel and Marshall Wise
  Integrated Assessment studies have shown that meeting ambitious greenhouse gas mitigation targets will require substantial amounts of bioenergy as part of the future energy mix. In the course of the Agricultural Model Intercomparison and Improvement Project (AgMIP), five global agro-economic models were used to analyze a future scenario with global demand for ligno-cellulosic bioenergy rising to about 100 ExaJoule in 2050. From this exercise a tentative conclusion can be drawn that ambitious climate change mitigation need not drive up global food prices much, if the extra land required for bioenergy production is accessible or if the feedstock, for example, from forests, does not directly compete for agricultural land. Agricultural price effects across models by the year 2050 from high bioenergy demand in an ambitious mitigation scenario appear to be much smaller (+5% average across models) than from direct climate impacts on crop yields in a high-emission scenario (+25% average across models). However, potential future scarcities of water and nutrients, policy-induced restrictions on agricultural land expansion, as well as potential welfare losses have not been specifically looked at in this exercise.
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility