Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by S.S. Malhi
Total Records ( 2 ) for S.S. Malhi
  A.F. Plante , I. Virto and S.S. Malhi
  Organo-mineral complexation in soils is strongly controlled by pedogenesis, but the mechanisms controlling it and its interaction with cultivation are not yet well understood. We compared the mineralogy and quality of organic carbon (C) among organo-mineral fractions from two soils with contrasting pedogenic origin. Sequential density fractionation (SDF; using 1.6, 1.8, 2.1, 2.4 and 2.6 g mL-1 sodium polytungstate solutions) followed by thermal analysis was applied to a Chernozem from Ellerslie, Alberta, and a Luvisol from Breton, Alberta, each under native and cultivated land uses. Similar clay mineralogy suggested that pedogenic controls on organic C stabilization were related to long-term vegetation cover. In addition to large differences in total organic C quantities, bulk soil and isolated fractions showed significant differences in organic C quality. Samples under native vegetation revealed greater organo-mineral complexation at Ellerslie compared with Breton, as expressed by less solubilisation, more organic C recovered in intermediate-density fractions, and exothermic differential scanning calorimetry peak signals associated with more stable forms of organic C. Long-term cultivation resulted in an overall shift to more stable organo-mineral complexes. The proportion of soil C in the 2.1-2.4 g mL-1 fraction increased under cultivation from 21 to 32% in Breton samples, and from 6 to 16% in Ellerslie samples. The quality of inherited pedogenic soil organic C stored in a soil thus appears to determine its response to long-term cultivation.
  S.S. Malhi , Y.K. Soon , C.A. Grant , R. Lemke and N. Lupwayi
  Field experiments were conducted on Dark Gray Luvisolic soils (Typic Cryoboralf) from 2004 to 2006 (wheat-canola-barley rotation) near Star City, Saskatchewan, and from 2004 to 2007 (barley-canola-wheat-barley rotation) near Beaverlodge, Alberta. The aim was to compare the effects of controlled-release urea (CRU) vs. conventional urea (hereafter called urea) on seed yield and N (i.e., protein) concentration, and N use efficiency (NUE). The treatments were combinations of tillage system [conventional tillage (CT) and no tillage (NT)], and N source (urea, CRU and a blended mixture), placement method (spring-banded, fall-banded and split application) and application rate (0-90 kg N ha-1). There was no tillage × fertilizer treatment interaction on the measured crop variables. Seed yield and crop N uptake and, to a lesser degree, seed N concentration generally increased with N application to 90 kg N ha-1. Fall-banded CRU or urea generally produced lower crop yield and N uptake than spring-banded CRU or urea. Split application of urea (half each at seeding and tillering) resulted in higher seed yield and N concentration in at least 3 of 7 site-years than did CRU and urea applied at a similar rate. A blend of urea and CRU was as effective as spring-banded CRU (at Star City only). Seed yield, N recovery and NUE were higher with spring-banded CRU than urea in 2 site-years, and similar to urea in other site-years. We conclude that for boreal soils of the Canadian prairies, spring-banded CRU is as effective as urea, and in some years more effective, in increasing crop yield and N recovery; however, urea split application can be even more effective in addition to having an advantage in managing risk.
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility