Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by Y. STEINBERGER
Total Records ( 2 ) for Y. STEINBERGER
  The aim of the current study was to gain a better understanding of the changes in soil microbial biomass and basal respiration dynamics in the vicinity of the bean caper (Zygophyllum dumosum) perennial desert shrub and the inter-shrub sites. Microbial biomasses as well as basal respiration were found to be significantly greater in the soil samples taken beneath the Z. dumosum shrubs than from the inter-shrub sampling sites, with no differences between the two sampling layers (0-10 and 10-20 cm) throughout the study period. However, seasonal changes were observed due to autumn dew formation, which significantly affected microbial biomass and basal respiration in the upper-layer inter-shrub locations. The calculated metabolic coeffcient (qCO2) revealed significant differences between the two sampling sites as well as between the two soil layers, elucidating the abiotic effect between the sites throughout the study period. The substrate availability index was found to significantly demonstrate the differences between the two sites, elucidating the significant contribution of Z. dumosum in food source availability and in moderating harsh abiotic components. The importance of basal microbial parameters and the derived indices as tools demonstrated the importance and need for basic knowledge in understanding plant-soil interactions determined by an unpredictable and harsh desert environment.
  S. Pen- Mouratov , T. Myblat , I. Shamir , G. Barness and Y. Steinberger
  Soil microorganism biomass and respiration and the soil nematode community were observed in the hypersaline desert valley that is found between the Dead Sea and the Red Sea. The lowest point of the valley is approximately 400 m below sea level, and is the lowest point on earth. Soil samples (n = 72) were collected from the 0-10 cm and 10-20 cm soil layers at different altitudes (from -400 to +100 m) in the open spaces between plants during one of the most extreme xeric periods. Both soil microbial respiration and microbial biomass were found to be negatively dependent on soil moisture (SM) and organic matter (OM), and positively dependent on pH values. The physical-chemical characteristics of this hypersaline area were extremely unfavorable for the soil nematode communities, and the nematodes were entirely absent in the open area below sea level. The bacterivores were found to be the most resistant nematodes in this hyperarid region, with the Wilsonema being the most widespread genus. We suggest that nitrogen availability may play a crucial role in the below-ground soil interaction in this region, with bacterivore nematodes as indicators of nitrogen availability.
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility